


# Uplift Allocation of Voltage and Reliability Constraints

Fengyu Wang and Yonghong Chen, Midcontinent ISO FERC Technical Conference 2018



#### MISO South Load Pockets





#### Key Takeaways

- Ensure adequate commitment and capacity for voltage and local reliability (VLR) issue.
- Integrate VLR constraints with security constrained unit commitment (SCUC) to lower the operating cost and reduce operators' manual work.
- Identify the commitment reasons for each VLR unit to properly allocate costs.

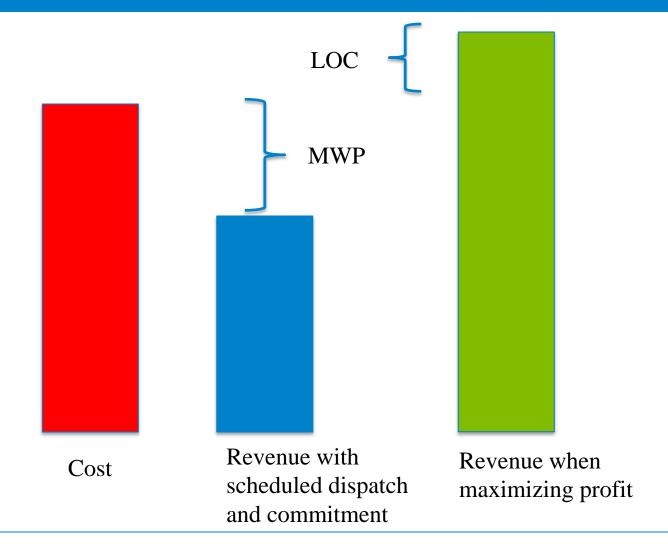


#### **VLR Constraints**

- Minimum commitment constraints
- Minimum capacity constraints
- Complex binary constraints

Integer Constraints

Adding VLR constraints in the SCUC can ensure voltage and local reliability. Integer constraints cannot be priced.




#### **Uplift Allocation**

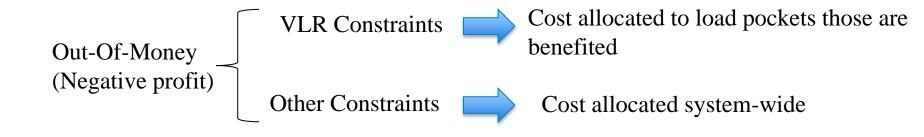
- The goal of uplift is to achieve market equilibrium so resources will not have incentive to deviate from their scheduled dispatch and commitment.
- Make-whole payment (MWP) recover their offer costs and make them whole.
- Resources may have lost opportunity cost (LOC) so resources may have incentive to deviate from scheduled dispatch and commitment. Current MISO settlement scheme does not pay LOC in day-ahead market.
- Cost allocation should maintain efficiency and equity on a cost causation basis.



#### MWP and LOC



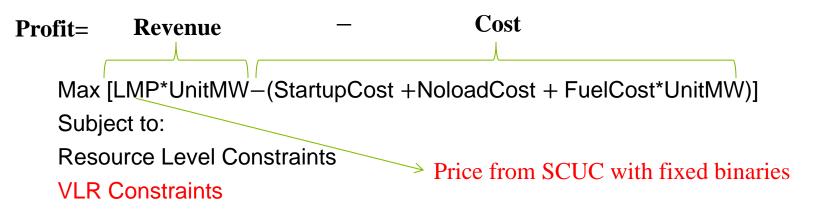



## Lost Opportunity Cost and Make Whole Payment with Different Reasons

- Make whole payment is payment to recover unit offer when the unit has a negative profit.
- Lost opportunity cost is the opportunity cost to continue providing the scheduled service instead of deviating from scheduled service.
- Further decompose make whole payment and lost opportunity cost into VLR and non-VLR reason.
  - $MWP_j^V$ : VLR make whole payment
  - MWP<sub>j</sub><sup>NV</sup>: Non-VLR make whole payment
  - $LOC_i^V$ : VLR lost opportunity cost
  - $LOC_i^{NV}$ :Non-VLR lost opportunity cost



#### Commitment Reasons of VLR Units






If a unit is committed with negative profit and this unit relieves a VLR constraint of a load pocket, the associated uplift cost should be allocated to the corresponding load pockets



#### **Profit Maximization**



VLR Constraints may enforce some units on.

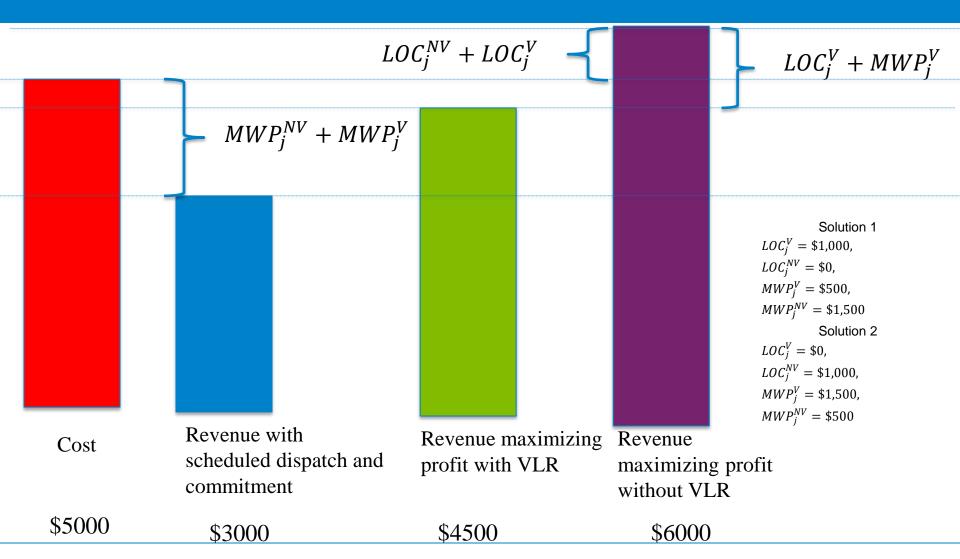


Difference caused by VLR Constraints



#### **Cost Allocation Metric**

$$\begin{aligned} Min \ MWP_{j}^{V} \\ LOC_{j}^{V} + MWP_{j}^{V} &= PT_{j}^{NV} - PT_{j}^{V} \\ MWP_{j}^{NV} + MWP_{j}^{V} &= \max\{0, -PT_{j}^{DA}\} \\ LOC_{j}^{NV} + LOC_{j}^{V} &= \max\{0, PT_{j}^{NV}\} - \max\{0, PT_{j}^{DA}\} \\ LOC_{j}^{V}, LOC_{j}^{NV}, MWP_{j}^{V}, MWP_{j}^{NV} &\geq 0 \end{aligned}$$


Minimizing VLR make whole payment  $MWP_j^V$  can reduce ex-post price changes led by uplift cost because system-wide load has larger denominator than load pocket to digest the make whole payment.

 $PT_j^{DA}$ : Profit from day-ahead SCUC  $PT_j^{NV}$ : Profit from profit maximization without VLR constraints  $PT_i^{V}$ : Profit from profit maximization without VLR constraints

$$PT_{i}^{DA} <= PT_{i}^{NV} <= PT_{i}^{V}$$



#### Example





#### Possible Scenarios

|                                           | Profit Max NonVLR (PM <sup>NoVLR</sup> ) |                                                          |                                     |                                                          |
|-------------------------------------------|------------------------------------------|----------------------------------------------------------|-------------------------------------|----------------------------------------------------------|
| Profit Max<br>VLR<br>(PM <sup>VLR</sup> ) | Profit                                   | Positive                                                 | Zero                                | Negative                                                 |
|                                           | Positive                                 | $MWP_{j}^{V}: 0$ $LOC_{j}^{V}: PT_{j}^{NV} - PT_{j}^{V}$ | Impossible                          | Impossible                                               |
|                                           | Zero                                     | $MWP_{j}^{V}: PT_{j}^{NV} - PT_{j}^{V}$ $LOC_{j}^{V}: 0$ | $MWP_{j}^{V}:0$<br>$LOC_{j}^{V}:0$  | Impossible                                               |
|                                           | Negative                                 | $MWP_{j}^{V}:-PT_{j}^{V}$ $LOC_{j}^{V}:PT_{j}^{NV}$      | $MWP: -PT_{j}^{V}$ $LOC_{j}^{V}: 0$ | $MWP_{j}^{V}: PT_{j}^{NV} - PT_{j}^{V}$ $LOC_{j}^{V}: 0$ |



#### Results



# Unit Profit for VLR and Non-VLR Profit Maximization Problems

| Units  | Profit with VLR $(PT_j^V)$ | Profit without VLR $(PT_j^{NV})$ | Difference $(PT_j^{NV} - PT_j^V)$ | Make whole Payment $(MWP_j^V)$ | Lost opportunity Cost $(LOC_j^V)$ |
|--------|----------------------------|----------------------------------|-----------------------------------|--------------------------------|-----------------------------------|
| Unit 1 | -\$20,619                  | \$0                              | \$20,619                          | \$20,619                       | \$0                               |
| Unit 2 | -\$14,507                  | \$0                              | \$14,507                          | \$14,507                       | \$0                               |
| Unit 3 | \$30,795                   | \$30,795                         | \$0                               | \$0                            | \$0                               |
| Unit 4 | -\$11,206                  | \$0                              | \$11,206                          | \$11,206                       | \$0                               |
| Unit 5 | \$847,840                  | \$847,840                        | \$0                               | \$0                            | \$0                               |
| Unit 6 | -\$2,482                   | \$613                            | \$3,095                           | \$2,482                        | \$613                             |
| Unit 7 | -\$6,988                   | -\$6,988                         | \$0                               | \$0                            | \$0                               |
| Unit 8 | \$3,436                    | \$4,388                          | \$952                             | \$0                            | \$952                             |



#### Commit Reason Table by Load Pocket

|        | Load pockets |      |     |     |     |
|--------|--------------|------|-----|-----|-----|
| Units  | LP 1         | LP 2 | LP3 | LP4 | LP5 |
| Unit 1 | 0            | 1    | 0   | 0   | 0   |
| Unit 2 | 0            | 1    | 0   | 0   | 0   |
| Unit 4 | 0            | 0    | 0   | 0   | 1   |
| Unit 6 | 0            | 0    | 1   | 0   | 1   |



#### Conclusion

- VLR constraints are binary constraints, which cannot be priced.
- Proposed uplift allocation method can efficiently allocate uplift cost and reduce the price distortion.
- Proposed method does not impact the current day-ahead market clearing engine



### Thank you!



### Appendix



#### Cost Allocation Metric (Cont'd)

- $PT_j^{NV} < 0$ . There is no positive component for uplift, and thus  $LOC_j^{NV} + LOC_j^{V} = 0$
- $PT_j^{NV} = PT_j^{DA} > 0$ . The commitment and dispatch schedule is efficient with the market clearing prices, so  $LOC_j^{NV} + LOC_j^{V} = 0$ .
- $PT_j^{NV} > 0 > PT_j^{DA}$ . The total uplift  $MWP_j^{NV} + MWP_j^{V} + LOC_j^{NV} + LOC_j^{NV}$  is  $PT_j^{NV} PT_j^{DA}$  and total make whole payment  $MWP_j^{NV} + MWP_j^{V}$  is  $-PT_j^{DA}$ . Therefore,  $LOC_j^{NV} + LOC_j^{V} = PT_j^{NV}$ .
- $PT_j^{NV} > PT_j^{DA} > 0$ . The total uplift  $MWP_j^{NV} + MWP_j^{V} + LOC_j^{NV} + LOC_j^{V}$  is  $PT_j^{NV} PT_j^{DA}$ . Since  $PT_j^{DA} > 0$ ,  $MWP_j^{NV} + MWP_j^{V} = 0$ . Therefore,  $LOC_i^{NV} + LOC_i^{V} = PT_i^{NV} PT_j^{DA}$ .



|                              | Profit from RSC  |                                                                                                                        |                                                                                                                                                  |                                                                                                                                                                                                                                                                                              |
|------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Profit<br>Max<br>Non-<br>VLR | Profit           | Positive                                                                                                               | Zero                                                                                                                                             | Negative                                                                                                                                                                                                                                                                                     |
|                              | Positive<br>Zero | $MWP_{j}^{V}:0$ $MWP_{j}^{NV}:0$ $LOC_{j}^{V}:PT_{j}^{NV}-PT_{j}^{V}$ $LOC_{j}^{NV}:PT_{j}^{V}-PT_{j}^{DA}$ Impossible | $MWP_{j}^{V}:0$ $MWP_{j}^{NV}:0$ $LOC_{j}^{V}:PT_{j}^{NV} PT_{j}^{V}$ $LOC_{j}^{NV}:PT_{j}^{V}$ $MWP_{j}^{V}:0$ $MWP_{j}^{NV}:0$ $LOC_{i}^{V}:0$ | $MWP_{j}^{V}: -PT_{j}^{V} + max\{0, PT_{j}^{V}\}$ $MWP_{j}^{NV}: PT_{j}^{V} - PT_{j}^{DA}  max\{0, PT_{j}^{V}\}$ $LOC_{j}^{V}: PT_{j}^{NV} - max\{0, PT_{j}^{V}\}$ $LOC_{j}^{NV}: max\{0, PT_{j}^{V}\}$ $MWP_{j}^{V}: -PT_{j}^{V}$ $MWP_{j}^{NV}: PT_{j}^{V} - PT_{j}^{DA}$ $LOC_{j}^{V}: 0$ |
|                              |                  |                                                                                                                        | $LOC_j^{NV}$ : 0                                                                                                                                 | $LOC_j^{NV}$ : 0                                                                                                                                                                                                                                                                             |
|                              | Negative         | Impossible                                                                                                             | Impossible                                                                                                                                       | $\begin{array}{c} MWP_{j}^{V} \colon PT_{j}^{NV} - PT_{j}^{V} \\ MWP_{j}^{NV} \colon PT_{j}^{V} - PT_{j}^{NV} - PT_{j}^{DA} \\ LOC_{j}^{V} \colon 0 \\ LOC_{j}^{NV} \colon 0 \end{array}$                                                                                                    |

